Normal Accidents: Living with High-Risk Technologies: Difference between revisions

no edit summary
(Created page with "{{a|devil|}}This is one of those “books that will change your life”. Well — that ''should'' change lives — that it was written in 1984 — {{author|Charles Perrow}} pa...")
 
No edit summary
Line 5: Line 5:
If it is right, it has profound consequences for how we in complex, tightly coupled systems, should think about risk. It seems inarguably right.
If it is right, it has profound consequences for how we in complex, tightly coupled systems, should think about risk. It seems inarguably right.


First, some definitions. Perrow uses “[[complexity]]” — a topic which is beginning to infuse the advocacy part of this site — without the benefit of [[systems analysis]], since it hadn’t really been invented when he was writing, but to describe interactions between discrete subsystems of an organisation that were not, and could not have been anticipated by the designers of the system.
First, some definitions. Perrow uses “[[complexity]]” — a topic which is beginning to infuse the advocacy part of this site — without the benefit of [[systems analysis]], since it hadn’t really been invented when he was writing, but to describe interactions between non-adjacent subcomponents of a system that were neither intended nor anticipated by the designers of the system.
:These represent interactions that were not in our original design of our world, and interactions that we as “operators” could not anticipate or reasonably guard against. What distinguishes these interactions is that they were not designed into the system by anybody; no one intended them to be linked. They baffle us because we acted in terms of our own designs of a world that we expected to exist—but the world was different.<ref>{{br|Normal Accidents}}, p. 75. Princeton University Press. Kindle Edition. </ref>
Contrast these with much more common “linear interactions”, where parts of the system interact with other components that precede or follow them in the system in ways that are expected and planned. In a well-designed system, these will (of course) predominate: any decent system should mainly do what it is designed to do and not act erratically in normal operation. Some systems are more complex than others, but even in the most linear systems are susceptible to some complexity — where they interact with the environment.<ref>Perrow characterises a “complex system” as one where ten percent of interactions are complex; and a “linear system” where less than one percent or interactions are complex. The greater the percentage of compex interactions in a system, the greater the potential for system accidents.</ref>
 
However complex interactions are only a source of catastophe if another condition is satisfied: that they are “tightly coupled” — processes happen fast, can’t be turned off, failing components can’t be isolated
{{sa}}
*[[Complexity]]
{{ref}}