A World Without Work: Difference between revisions

From The Jolly Contrarian
Jump to navigation Jump to search
No edit summary
No edit summary
 
(33 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{review|A World Without Work: Technology, Automation, and How We Should Respond|Daniel Susskind|||Help, help, we’re all going to die|
{{A|book review|'''''A World Without Work: Technology, Automation, and How We Should Respond''''' by Daniel Susskind (2020) <small>Get it [https://books.google.co.uk/books/about/A_World_Without_Work.html? here]</small>
[[File:Dole-queue.jpg|450px|thumb|center|Passtimes of the future, as imagined by {{author|Daniel Susskind}}]]
{{image|Dole-queue|jpg|Pastimes of the future, as imagined by {{author|Daniel Susskind}}}}}}Dr. Susskind, scion of the storied futurology dynasty, will doubtless find enough [[general counsel]] anxious to be seen at the technological vanguard, and suckers for sci-fi alternative histories like me, to recoup his advance, but {{br|A World Without Work}} will not signpost much less dent the immutable trajectory of modern employment.
}}
In which {{author|Daniel Susskind}} grasps a flagon of {{author|Ray Kurzweil}}’s home-made Kool-Aid and bets the farm.


Susskind will doubtless  find enough gullible [[general counsel]], anxious to seem at the technological vanguard — and interested mugs like me, who are suckers for sci fi alternative histories — at least to recoup his advance but, like the consistent output of his [[Richard Susskind|father]] over the last three decades, {{br|A World Without Work}} will not signpost, let alone dent, the  immutable trajectory of modern employment, failing as it does to understand how humans, organisations and economies work, while ignoring — neigh, ''contradicting'' — the whole history of technology, from the plough.
To my mind Susskind mischaracterises what work is and how humans, organisations and economies organise themselves to do it, and overlooks — neigh, ''contradicts'' — the whole geological history of technology. Technology has ''never'' destroyed employment ''overall''. Susskind thinks it will now — that ''homo sapiens'' has reached some kind of Kubrickian tipping point — but gives no good grounds I could see to support that belief.


Technology has ''never'' destroyed overall labour, and Susskind gives no good grounds for believing it will suddenly start now.
All innovations create unexpected [[diversity]] or opportunity — that’s more or less the definition of “innovation” — and all deliver more subsidiary [[complexity]] & inefficiency as a by-product. Both — the opportunities ''and'' the inefficiencies — “need” human midwifery, to exploit them (for the former) and effectively manage them (for the latter).  


No innovation since the wheel has failed to create unexpected diversity, or opportunity — that’s more or less the definition of “innovation” ''or'' more subsidiary complexity & inefficiency as a by-product. Both the opportunities and the inefficiencies “need” human midwifery, to exploit (for the former) and effectively manage (for the latter).  
Nothing that the [[information revolution]] has yet thrown up suggests any of that has changed. The more [[technology]] is deployed, the more the fog of confusion and [[complexity]] as in [[complexity theory]], and not just [[complicated]]ness — engulfs us.  


Nothing that the information revolution has yet thrown up suggests any of that has changed. There more technology is deployed, the more fog of confusion and complexity engulfs us.  
An excellent counterpoint, though equally flawed in other ways, is the late {{author|David Graeber}}’s highly provocative {{Br|Bullshit Jobs: A Theory}}, which has a far more realistic, if no less glum, prognosis: soul-destroying jobs aren’t going away: they are only going to get worse. And there will be more and more of them. This feels more plausible to me.  


===But chess-playing supercomputers... ===
[[This time it’s different|This time is ''not'' different]].  
Hand-waving about chess and go-playing supercomputers — there is a lot of that in {{br|A World Without Work}} — does not advance the argument. Both are hermetically sealed games on small, finite boards with simple sets of unvarying rules between two players sharing a common objective. Outcomes are entirely deterministic, and you can see that, at the limit, the player with the superior number-crunching power ''must'' win. Even here the natural imagination of human players, otherwise at a ''colossal'' disadvantage from an information processing perspective, made the job of beating them surprisingly hard. This ought to be the lesson: even in thoroughly simplistic binary games, it takes a ton of dumb processing power to beat a puny imagineer. Instead, Susskind reads this as a signpost to the [[Apocalypse]].


But life is not a two-person board-game on a small-board with fixed rules a static, common, zero-sum objective. Analogising from this ironically, something a computer could not do — is not great police-work. In the world of [[systems anaysis]], [[Chess]] and [[Go]] are [[complicated]], not [[complex]], problems. The risk payoff is normal, not exponential. They can, in theory, be “brute force” managed by skilled operation of an algorithm, and the consequences of failure are predictable and contained — you lose. ''[[Complex]]'' problems — those one finds at the frontier, when one has boldly gone where no-one has gone before, in dynamic systems, where information is not perfect, where risk outcomes are [[convexity|convex]] — so-called “[[wicked environment]]s” — are not like that.<ref>There is more on this topic at [[complex systems]].</ref> Here algorithms are no good. One needs experience, wisdom and judgment.
===But [[chess]]-playing supercomputers - ===
Appeals to [[Chess]] and [[Go]]-playing supercomputers — there are many in {{br|A World Without Work}} — do not change anything.
 
[[Chess]] and [[Go]] are [[complicated]], not [[complex]], problems. Both are hermetically and — ahh — ''[[hermeneutics|hermeneutically]]'' sealed zero-sum games on small, finite boards with simple sets of unvarying rules between two players sharing a common and static objective. Their risk payoff is normal, not exponential. They can, in theory, be “brute force” managed by skilled operation of an [[algorithm]], and the consequences of success or failure are predictable and contained — you win some, you lose some.  
 
Either way, gameplay is deterministic: at the limit, the player with the better number-crunching power ''must'' win. Even here, the natural imagination of a human player, otherwise at a colossal disadvantage to the raw rule-processing power of a difference engine, makes beating the [[meatware]] by algorithm surprisingly hard.
 
This ought to be the lesson: even for simplistic binary games, it takes a ton of dumb processing power to beat a puny imagineer. But somehow, Susskind reads it instead as a signpost to the [[Apocalypse]].
 
Life is ''not'' a two-person board-game on a small-board with fixed rules and a static, common, zero-sum objective. Not even at university. Life is complex.  ''[[Complex]]'' problems — those one finds at the frontier, when one has boldly gone somewhere no-one has gone before, in dynamic systems, where information is not perfect, where risk outcomes are [[convexity|convex]] — so-called “[[wicked environment]]s” — are not like problems in [[Chess]].<ref>There is more on this topic at [[complex systems]].</ref> Here, [[algorithm]]s are no good. One needs experience, wisdom and judgment. ''[[Algorithm]]s get in the way''.


===Computers can’t solve novel problems===
===Computers can’t solve novel problems===
By design, computers can only follow rules. One which could not be relied on to process instructions with absolute fidelity would be a ''bad'' computer. ''Good'' computers cannot think, they cannot imagine, they cannot handle ambiguity — if they have a “mental life”, it exists in a flat space with no future or past. Computer language, by design, has no ''tense''. It is not a ''symbolic'' structure, in that its vocabulary does not represent anything.<ref>See: [[Code and language - technology article|Code and language]].</ref> Machines are linguistically, structurally ''incapable'' of interpreting, let alone ''coining'' [[metaphor|metaphors]], and they cannot reason by analogy or manage any of the innate ambiguities that comprise human decision-making.  
By design, computers always, unfailingly, follow rules. A machine that could not process instructions with absolute fidelity would be a ''bad'' computer. ''Good'' computers cannot think, they cannot imagine, they cannot handle ambiguity — if they have a “mental life”, it exists in a flat space with no future or past. Computer language, by design, has no ''tense''. It is not a ''symbolic'' structure, in that its vocabulary does not represent anything.<ref>See: [[Code and language - technology article|Code and language]].</ref> Machines are linguistically, structurally ''incapable'' of interpreting, let alone ''coining'' [[metaphor|metaphors]], and they cannot reason by analogy or manage any of the innate ambiguities that comprise human decision-making.  
 
Until they can do these things  — and conceptually there is no reason a machine ''couldn’t'', but that’s just not how, to date, computers have been designed — they can only aid, and in most circumstances, ''complicate'', the already over-complicated networks we all inhabit.
 
=== But [[chess]]-playing supercomputers - ===
But, but, but — how can we explain this seemingly relentless encroachment of the dumb algorithm on the inviolable province of consciousness?  What will be left for us to do? Well, there’s an alternative explanation, and it’s a bit more prosaic: it is not so much that [[AI]] is breaching the mystical ramparts of consciousness, but that much of what we ''thought'' required the ineffable, ''doesn’t''. Much of what we thought was “human magic” turned out to be just, in Arthur C. Clarke’s worlds, “sufficiently advanced technology” that it ''seemed'' like magic. 


Until they can do these things, they can only aid — in most circumstances, ''complicate'' the already over-complicated networks we all inhabit.  
This isn’t news: impish polymath {{author|Julian Jaynes}} laid it all out in some style in 1976. If you haven’t read {{br|The Origin of Consciousness in the Breakdown of the Bicameral Mind}}, do. It’s a fabulous book. In any case, a lot less of what we ''take'' to require conscious thought actually ''does'' require conscious thought. Like driving a car. Or playing the piano.  


And even this is before considering the purblind, irrational sociology that propels all organisations, because it propels all ''individuals'' in those organisations. Like the academy in which {{author|Daniel Susskind}}’s millenarianism thrives, computers function best in a theoretical, [[Platonic form|Platonic]] universe governed by unchanging and unambiguous physical rules, and populated by rational agents. In that world, Susskind ''might'' have a point — though I doubt it.  
And even this is before considering the purblind, irrational sociology that propels all organisations, because it propels all ''individuals'' in those organisations. Like the academy in which {{author|Daniel Susskind}}’s millenarianism thrives, computers work best in a theoretical, [[Platonic form|Platonic]] universe, governed by unchanging and unambiguous physical rules, and populated by rational agents. In that world, Susskind might have a point, but even there, I doubt it.  


But in the conflicted, dirty, unpredictable universe we find ourselves in out here in TV land, there will continue to be plenty of work, as there always has been, administrating, governing, auditing, advising, [[rent-seeking]] — not to mention speculating and bullshitting about the former — as long as the computer-enhanced tight-coupled complexity of our networks doesn't [[Lentil convexity|wipe us out first]].
But in the conflicted, dirty, unpredictable, [[complex]] universe we find ourselves in out here in TV Land — there will continue to be plenty of work, as there always has been, administrating, governing, auditing, advising, [[rent-seeking]], and amusing ourselves to death, at least as long as the computer-enhanced, [[Tight coupling|tightly-coupled]] complexity of our networks doesn’t [[Lentil convexity|wipe us out]] before we get the chance to do it to ourselves.


===Employment and Taylorism===
===Employment and Taylorism===
Susskind’s conception of “work” as a succession of definable, atomisable and impliedly dull tasks — a framework, of course, which suits it perfectly to adaptation by machine — is as retrograde and-out-of-touch as you might expect of an academic son of an academic whose closest encounter with paid employment has been as a special policy adviser to government. Perhaps he once had a paper round. This kind of Taylorism is common in management layers of the corporate world, of course, but that hardly makes it any less boneheaded.  
Susskind’s conception of “work” as a succession of definable, atomisable, impliedly ''dull'' tasks — a framework, of course, which suits it perfectly to adaptation by machine — is a kind of [[Taylorism]]. It is a common view in management layers of the corporate world, of course — we might almost call it a [[dogma]] — but that hardly makes a case for it.
 
The better response is to recognise that “definable, atomisable and dull tasks” do not define what ''is'' employment, but what it should ''not'' be. The [[JC]]’s [[third law of worker entropy]] is exactly that: [[tedium]] is a sure sign of [[waste|''waste'']] in an organisation.  If your workers are bored, you have a problem. If they’re boring ''each other'',<ref>Hello, financial services!</ref> then it’s an exponential problem.


The better response is to recognise that definable, atomisable and dull tasks do not define what is employment, but it's very inverse: what it should not be. The [[JC]]’s [[third law of worker entropy]] is exactly that: [[tedium]] is as sure a sign of [[waste]] in an organisation. If your workers are bored, you have a problem. If they’re boring ''each other'', then it’s an exponential problem.
[[Daniel Susskind]] does not say how using [[artificial intelligence]] to bore each other is going to change that.


{{sa}}
{{sa}}
* {{author|David Graeber}}’s {{Br|Bullshit Jobs: A Theory}}
*[[Technological unemployment]]
*[[Technological unemployment]]
*[[Coronavirus]]
*[[Coronavirus]]
*[[Code and language - technology article|Code and language]]
*[[Code and language - technology article|Code and language]]
*[[Reg tech]]
*[[Reg tech]]
{{ref}}
{{Book Club Wednesday|2/12/20}}{{ref}}

Latest revision as of 11:05, 5 April 2023

The Jolly Contrarian’s book review service™

A World Without Work: Technology, Automation, and How We Should Respond by Daniel Susskind (2020) Get it here

Pastimes of the future, as imagined by Daniel Susskind
Index: Click to expand:
Tell me more
Sign up for our newsletter — or just get in touch: for ½ a weekly 🍺 you get to consult JC. Ask about it here.

Dr. Susskind, scion of the storied futurology dynasty, will doubtless find enough general counsel anxious to be seen at the technological vanguard, and suckers for sci-fi alternative histories like me, to recoup his advance, but A World Without Work will not signpost much less dent the immutable trajectory of modern employment.

To my mind Susskind mischaracterises what work is and how humans, organisations and economies organise themselves to do it, and overlooks — neigh, contradicts — the whole geological history of technology. Technology has never destroyed employment overall. Susskind thinks it will now — that homo sapiens has reached some kind of Kubrickian tipping point — but gives no good grounds I could see to support that belief.

All innovations create unexpected diversity or opportunity — that’s more or less the definition of “innovation” — and all deliver more subsidiary complexity & inefficiency as a by-product. Both — the opportunities and the inefficiencies — “need” human midwifery, to exploit them (for the former) and effectively manage them (for the latter).

Nothing that the information revolution has yet thrown up suggests any of that has changed. The more technology is deployed, the more the fog of confusion and complexity — as in complexity theory, and not just complicatedness — engulfs us.

An excellent counterpoint, though equally flawed in other ways, is the late David Graeber’s highly provocative Bullshit Jobs: A Theory, which has a far more realistic, if no less glum, prognosis: soul-destroying jobs aren’t going away: they are only going to get worse. And there will be more and more of them. This feels more plausible to me.

This time is not different.

But chess-playing supercomputers -

Appeals to Chess and Go-playing supercomputers — there are many in A World Without Work — do not change anything.

Chess and Go are complicated, not complex, problems. Both are hermetically and — ahh — hermeneutically sealed zero-sum games on small, finite boards with simple sets of unvarying rules between two players sharing a common and static objective. Their risk payoff is normal, not exponential. They can, in theory, be “brute force” managed by skilled operation of an algorithm, and the consequences of success or failure are predictable and contained — you win some, you lose some.

Either way, gameplay is deterministic: at the limit, the player with the better number-crunching power must win. Even here, the natural imagination of a human player, otherwise at a colossal disadvantage to the raw rule-processing power of a difference engine, makes beating the meatware by algorithm surprisingly hard.

This ought to be the lesson: even for simplistic binary games, it takes a ton of dumb processing power to beat a puny imagineer. But somehow, Susskind reads it instead as a signpost to the Apocalypse.

Life is not a two-person board-game on a small-board with fixed rules and a static, common, zero-sum objective. Not even at university. Life is complex. Complex problems — those one finds at the frontier, when one has boldly gone somewhere no-one has gone before, in dynamic systems, where information is not perfect, where risk outcomes are convex — so-called “wicked environments” — are not like problems in Chess.[1] Here, algorithms are no good. One needs experience, wisdom and judgment. Algorithms get in the way.

Computers can’t solve novel problems

By design, computers always, unfailingly, follow rules. A machine that could not process instructions with absolute fidelity would be a bad computer. Good computers cannot think, they cannot imagine, they cannot handle ambiguity — if they have a “mental life”, it exists in a flat space with no future or past. Computer language, by design, has no tense. It is not a symbolic structure, in that its vocabulary does not represent anything.[2] Machines are linguistically, structurally incapable of interpreting, let alone coining metaphors, and they cannot reason by analogy or manage any of the innate ambiguities that comprise human decision-making.

Until they can do these things — and conceptually there is no reason a machine couldn’t, but that’s just not how, to date, computers have been designed — they can only aid, and in most circumstances, complicate, the already over-complicated networks we all inhabit.

But chess-playing supercomputers -

But, but, but — how can we explain this seemingly relentless encroachment of the dumb algorithm on the inviolable province of consciousness? What will be left for us to do? Well, there’s an alternative explanation, and it’s a bit more prosaic: it is not so much that AI is breaching the mystical ramparts of consciousness, but that much of what we thought required the ineffable, doesn’t. Much of what we thought was “human magic” turned out to be just, in Arthur C. Clarke’s worlds, “sufficiently advanced technology” that it seemed like magic.

This isn’t news: impish polymath Julian Jaynes laid it all out in some style in 1976. If you haven’t read The Origin of Consciousness in the Breakdown of the Bicameral Mind, do. It’s a fabulous book. In any case, a lot less of what we take to require conscious thought actually does require conscious thought. Like driving a car. Or playing the piano.

And even this is before considering the purblind, irrational sociology that propels all organisations, because it propels all individuals in those organisations. Like the academy in which Daniel Susskind’s millenarianism thrives, computers work best in a theoretical, Platonic universe, governed by unchanging and unambiguous physical rules, and populated by rational agents. In that world, Susskind might have a point, but even there, I doubt it.

But in the conflicted, dirty, unpredictable, complex universe we find ourselves in — out here in TV Land — there will continue to be plenty of work, as there always has been, administrating, governing, auditing, advising, rent-seeking, and amusing ourselves to death, at least as long as the computer-enhanced, tightly-coupled complexity of our networks doesn’t wipe us out before we get the chance to do it to ourselves.

Employment and Taylorism

Susskind’s conception of “work” as a succession of definable, atomisable, impliedly dull tasks — a framework, of course, which suits it perfectly to adaptation by machine — is a kind of Taylorism. It is a common view in management layers of the corporate world, of course — we might almost call it a dogma — but that hardly makes a case for it.

The better response is to recognise that “definable, atomisable and dull tasks” do not define what is employment, but what it should not be. The JC’s third law of worker entropy is exactly that: tedium is a sure sign of waste in an organisation. If your workers are bored, you have a problem. If they’re boring each other,[3] then it’s an exponential problem.

Daniel Susskind does not say how using artificial intelligence to bore each other is going to change that.

See also

  1. There is more on this topic at complex systems.
  2. See: Code and language.
  3. Hello, financial services!