End-to-end principle: Difference between revisions

Jump to navigation Jump to search
no edit summary
No edit summary
No edit summary
Line 13: Line 13:
{{author|Lawrence Lessig}} lays out the concept very well in his magnificent {{br|Code: Version 2.0}}.<ref>Page 126, analog freaks.</ref>.  
{{author|Lawrence Lessig}} lays out the concept very well in his magnificent {{br|Code: Version 2.0}}.<ref>Page 126, analog freaks.</ref>.  
===Network layers===
===Network layers===
You can see any [[network]] as a series of layers, with only the most basic, bottom most layer connecting every item in the network. Each successive layer is more complex, but its use is suitable for a more limited number of “clients” with specific applications. That bottom layer must be as simple and universal as possible universal in a literal sense, since every client of the network must be able to operate on it. Complications in the lower level of a network have costs for all higher-layer clients, even if those clients do not need the features. So the basic idea is to put complicating features in the highest possible layers such that every client operating at that layer (or higher) needs that feature.
You can see any [[network]] as a series of layers, with only the most basic layer connecting every client on the network. Each successive layer is more complicated, specialised, but will only be suitable for a more limited number of “clients” with specific use-cases. That bottom layer is universal — literally, since every client of the network operates on it — and must be as simple and uncomplicated as possible. Any complication in a lower-level network has costs for all clients interacting with the network through that layer, if they do not need the feature that complication provides. So the basic idea is to put complicating features in the highest possible layers such that only clients operating at that layer (or higher) needs that feature.
===Conceptual example: transport network===
===Conceptual example: transport network===
Say we are organising transport around an area of uncultivated, flat land.<ref>You can do other things with this network, too — build on it, grow things on it, but let’s keep it transport, to keep it simple.</ref>
Say we are organising transport around an area of uncultivated, flat land.<ref>You can do other things with this network, too — build on it, grow things on it, but let’s keep it transport, to keep it simple.</ref>
*'''Most basic level''': The whole area, as it is, At its most basic level the network is maximally simple and flexible. You can access the “network” from anywhere (i.e., wherever you happen to be is an "entry-point" to the network) but you have to put in all the effort if you want to get anywhere. See Sid Snot quote above.
*'''Most basic level''': The whole area, as it is, at its most basic level the network is maximally simple and flexible. You can access the “network” from anywhere (i.e., wherever you happen to be is an "entry-point" to the network) but you have to put in all the effort if you want to get anywhere. See Sid Snot quote above.
*'''Second layer''': You can overlay a second layer suitable for people with a certain mode of transport. It will be necessarily less comprehensive than the basic layer, and will not suit all people, and will therefore have with a more limited set of entry-points. For example, a road system on the land optimizes the land for vehicular traffic, but some cost to those wanting travel some other way (and certainly to those wanting to use land for non-transport purposes) — so you don’t pave over the whole area, but built an road network, optimised for automobiles. People wanting to use the road the network need a car; people with other needs don’t use the road network at all. Once you have a car you can go anywhere on the road network; to go elsewhere in the area, you need to ditch your car and walk.
*'''Second layer''': You can overlay a second layer suitable for people with a certain mode of transport. It will be necessarily less comprehensive than the basic layer, and will not suit all people, and will therefore have with a more limited set of entry-points. For example, a road system on the land optimizes the land for vehicular traffic, but some cost to those wanting travel some other way (and certainly to those wanting to use land for non-transport purposes) — so you don’t pave over the whole area, but built an road network, optimised for automobiles. People wanting to use the road the network need a car; people with other needs don’t use the road network at all. Once you have a car you can go anywhere on the road network; to go elsewhere in the area, you need to ditch your car and walk.
*'''Third layer''': Say someone then operates a bus service on the road network. This is a third layer excellent for those who want to go whether the bus is going on the road network, but no good if you want to go somewhere else on the road network, let alone if you want to go elsewhere on the land.
*'''Third layer''': Say someone then operates a bus service on the road network. This is a third layer excellent for those who want to go whether the bus is going on the road network, but no good if you want to go somewhere else on the road network, let alone if you want to go elsewhere on the land.

Navigation menu